Optimization Problems over Unit-Distance Representations of Graphs

نویسندگان

  • Marcel Kenji de Carli Silva
  • Levent Tunçel
چکیده

We study the relationship between unit-distance representations and the Lovász theta number of graphs, originally established by Lovász. We derive and prove min-max theorems. This framework allows us to derive a weighted version of the hypersphere number of a graph and a related min-max theorem. Then, we connect to sandwich theorems via graph homomorphisms. We present and study a generalization of the hypersphere number of a graph and the related optimization problems. The generalized problem involves finding the smallest ellipsoid of a given shape which contains a unit-distance representation of the graph. Arbitrary positive semidefinite forms describing the ellipsoids yield NP-hard problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the distance eigenvalues of Cayley graphs

In this paper, we determine the distance matrix and its characteristic polynomial of a Cayley graph over a group G in terms of irreducible representations of G. We give exact formulas for n-prisms, hexagonal torus network and cubic Cayley graphs over abelian groups. We construct an innite family of distance integral Cayley graphs. Also we prove that a nite abelian group G admits a connected...

متن کامل

Application of n-distance balanced graphs in distributing management and finding optimal logistical hubs

Optimization and reduction of costs in management of distribution and transportation of commodity are one of the main goals of many organizations. Using suitable models in supply chain in order to increase efficiency and appropriate location for support centers in logistical networks is highly important for planners and managers. Graph modeling can be used to analyze these problems and many oth...

متن کامل

Semideenite Programs and Combinatorial Optimization

Outline 1. Introductory examples: Shannon capacity and maximum cuts. 2. Preliminaries: linear programming, semideenite matrices. 3. General properties of semideenite programs: equivalent forms, Farkas Lemma, Duality Theorem, Ellipsoid method, Interior point method. 4. Getting semideenite programs I: eigenvalues of graphs and the method of variables. 5. Getting semideenite programs II: geometric...

متن کامل

Semideenite Programs and Combinatorial Optimization

Outline 1. Introductory examples: Shannon capacity and maximum cuts. 2. Preliminaries: linear programming, semideenite matrices. 3. General properties of semideenite programs: equivalent forms, Farkas Lemma, Duality Theorem, Ellipsoid method, Interior point method. 4. Getting semideenite programs I: eigenvalues of graphs and the method of variables. 5. Getting semideenite programs II: geometric...

متن کامل

Semidefinite programs and combinatorial optimization

4 Obtaining semidefinite programs 20 4.1 Unit distance graphs and orthogonal representations . . . . . . . . . . . . . . . . . . 20 4.2 Discrete linear and quadratic programs . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.3 Spectra of graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.4 Engineering applications . . . . . . . . . . . . . . . . . . ....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2013